Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the world’s deadliest infectious disease. Mtb uses a variety of mechanisms to evade the human host’s defenses and survive intracellularly. Mtb’s oxidative stress response enables Mtb to survive within activated macrophages, an environment with reactive oxygen species and low pH. Dye-decolorizing peroxidase (DyP), an enzyme involved in Mtb’s oxidative stress response, is encapsulated in a nanocompartment, encapsulin (Enc), and is important for Mtb’s survival in macrophages. Encs are homologs of viral capsids and encapsulate cargo proteins of diverse function, including those involved in iron storage and stress responses. DyP contains a targeting peptide (TP) at its C-terminus that recognizes and binds to the interior of the Enc nanocompartment. Here, we present the crystal structure of the Mtb-Enc•DyP complex and compare it to cryogenic-electron microscopy (cryo-EM) Mtb-Enc structures. Investigation into the canonical pores formed at symmetrical interfaces reveals that the five-fold pore for the Mtb-Enc crystal structure is strikingly different from that observed in cryo-EM structures. We also observe DyP-TP electron density within the Mtb-Enc shell. Finally, investigation into crystallographic small-molecule binding sites gives insight into potential novel avenues by which substrates could enter Mtb-Enc to react with Mtb-DyP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.