Abstract
The atomistic structure of a high-strength Cu42.5Ti41.5Ni7.5Zr2.5Hf5Si1 bulk metallic glass prepared by copper-mould casting has been characterized by transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). High-resolution TEM and high-angle annular dark-field observations revealed that crystalline nanoparticles with sizes less than 10 nm are embedded in an amorphous matrix. It was confirmed by energy-dispersive X-ray spectroscopy in combination with STEM that these nanoparticles possess higher copper content than the amorphous matrix. Nanobeam electron diffraction experiments indicated that their crystalline structure is basically face-centred cubic with ordered atomic arrangements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.