Abstract

Glass samples of composition 40AgI–(60–x)AgPO3–xAg2WO4 (0 ≤ x ≤ 25 mol %) have been prepared by the conventional melt-quenching method. These glasses receive renewed interest due to their ionic conductivity and transparency in the visible range. Because the physical and optical properties of these glasses are highly dependent on composition in this system, a comprehensive structural study has been carried out using Raman spectroscopy and 1D and 2D NMR of the 31P and 109Ag nuclei. With increasing Ag2WO4 content, the network is modified from a 1D Q(2)-like chain structure to a topology in which Q(1) and Q(0) species linked to octahedrally coordinated tungsten species dominate. This structural transformation increases the glass rigidity and stability against hydrolysis reactions. The compositional evolution of the phosphate speciation (in terms of Q(n)mW units) is consistent with maximum tungstate dispersion in glasses with x ≤ 10, while for glasses with higher tungstate content the data are more consistent ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.