Abstract
N-substituted glycine oligomers or peptoids with charged side chains are a novel class of cell penetrating peptide mimetics and have been shown to serve as drug delivery agents. Here, we investigated by NMR spectroscopy and quantum chemical calculations whether a Rhodamine B labelled peptoid [RhoB(Spiro)-Ahx]-[But](6A)NH(2) with lysine-like side chains adopts structural motifs similar to regular peptides. Due to a low chemical shift dispersion, high resolution structure determination with conventional NMR-derived distance restraints and J-couplings was not possible. Instead, a combined assignment and structure refinement strategy using the QM/MM force field COSMOS-NMR was developed to interpret the highly ambiguous chemical shift and distance constraints and obtain a medium resolution three-dimensional structural model. This allowed us to select for the all cis-amide conformation of the peptide with a pseudo-helical arrangement of extended side chains as a faithful representative structure of [RhoB(Spiro)-Ahx]-[But](6A)NH(2). We tested the biological activity of the peptoid by live-cell imaging, which showed that the cellular uptake of the peptoid was comparable to conventional cell-penetrating peptides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.