Abstract

The Niyang River is an important tributary of the Yarlong Zangbo River, which is also an important water source in the Gongbujiangda and Linzhi areas of Tibet. In this study, water and sediment samples from 18 sites in the Niyang River were collected. The physical and chemical properties, concentrations of 12 heavy metals, and the microbial community in the sediments were determined. The microbial community structures in the sediments collected in 2017 and 2018 were highly similar at the phylum and genus levels. The most dominant type of bacteria in the sediment of the Niyang River was Proteobacteria. Other dominant bacteria included Bacteroidetes, Acidbacteria, and Actinobacteria. At the genus level, the abundance of Flavobacterium was high. Other conditional pathogenic bacteria, such as Aeromonas and Acinetobacter, were detected. Cluster analysis found that there were certain spatial differences among the upstream, midstream, and downstream microbial communities. The microbial community of sediments in the power station reservoir area was unique. Correlation analysis showed that the temperature, dissolved oxygen, electrical conductance, Cr, Zn, Sr, and Ba in the sediments had high correlation with abundance of specific microbes at the phylum level. Redundancy analysis suggested that total nitrogen, total phosphorus, dissolved oxygen, Cr, Sr, Ba, and Mn were the main influencing factors of microbial community structure in the sediments of the Niyang River. The results of this study provide data support for understanding the spatial and temporal distribution of the microbial community in sediments of the Niyang River and identifying their environmental impact factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.