Abstract
The relative efficacy of a variety of low-molecular-mass displacers was examined on three different stationary phase materials. Several homologous series of displacer molecules were evaluated on these ion- exchange resins using a displacer ranking plot based on the steric mass action model. The results demonstrate that while aromaticity and hydrophobicity can play a significant role in the affinity of displacer molecules on polymethacrylate based and hydrophilized polystyrene–divinylbenzene based materials, this effect is much less pronounced on an agarose based resin. The work presented in this paper demonstrates that different structural features of low-molecular-mass displacers can dominate their affinity on various stationary phase materials employed and provides rules of thumb for the design of high affinity, low-molecular-mass displacers for a variety of commercial cation-exchange materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.