Abstract

Accumulating evidence indicates that disruption of the gut microbiota by a high-fat diet (HFD) may play a pivotal role in the progression of metabolic disorders such as non-alcoholic fatty liver disease (NAFLD). In this study, the structural changes of gut microbiota were analyzed in an HFD-induced NAFLD rat model during treatment with an ancient Chinese herbal formula (CHF) used in clinical practice –Qushi Huayu Fang. CHF treatment significantly reduced body weight, alleviated hepatic steatosis, and decreased the content of triglycerides and free fatty acids in the livers of the rats. Gut microbiota of treated and control rats were profiled with polymerase chain reaction-denaturing gradient gel electrophoresis and bar-coded pyrosequencing of the V3 region of 16S rRNA genes. Both analyses indicated that the CHF-treated group harbored significantly different gut microbiota from that of model rats. Partial least squares discriminant analysis and taxonomy-based analysis were further employed to identify key phylotypes responding to HFD and CHF treatment. Most notably, the genera Escherichia/Shigella, containing opportunistic pathogens, were significantly enriched in HFD-fed rats compared to controls fed normal chow (P<0.05) but they decreased to control levels after CHF treatment. Collinsella, a genus with short chain fatty acid producers, was significantly elevated in CHF-treated rats compared to HFD-fed rats (P<0.05). The results revealed that the bacterial profiles of HFD-induced rats could be modulated by the CHF. Elucidation of these differences in microbiota composition provided a basis for further understanding the pharmacological mechanism of the CHF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.