Abstract

Flow-through experiments were conducted to study the calcium–silicate–hydrate (C–S–H) gel dissolution kinetics. During C–S–H gel dissolution the initial aqueous Ca/Si ratio decreases to reach the stoichiometric value of the Ca/Si ratio of a tobermorite-like phase (Ca/Si=0.83). As the Ca/Si ratio decreases, the solid C–S–H dissolution rate increases from (4.5×10−14 to 6.7×10−12) molm−2s−1. The changes in the microstructure of the dissolving C–S–H gel were characterized by small-angle neutron scattering (SANS) and 29Si magic-angle-spinning nuclear magnetic resonance (29Si-MAS NMR). The SANS data were fitted using a fractal model. The SANS specific surface area tends to increase with time and the obtained fit parameters reflect the changes in the nanostructure of the dissolving solid C–S–H within the gel. The 29Si MAS NMR analyses show that with dissolution the solid C–S–H structure tends to a more ordered tobermorite structure, in agreement with the Ca/Si ratio evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.