Abstract

During translation elongation decoding is based on the recognition of codons by corresponding tRNA anticodon triplets. Molecular mechanisms that regulate global protein synthesis via specific base modifications in tRNA anticodons have recently received increasing attention. The conserved eukaryotic Elongator complex specifically modifies uridines located in the wobble base position of tRNAs. Here, we present the crystal structure of Dehalococcoides mccartyi Elp3 (DmcElp3) at 2.15 Å resolution. Our results reveal the unexpected arrangement of Elp3 lysine acetyl transferase (KAT) and radical S-adenosyl-methionine (SAM) domains that share a large interface to form a composite active site and tRNA binding pocket with an iron sulfur cluster located in the dimerization interface of two DmcElp3 molecules. Structure-guided mutagenesis studies of yeast Elp3 confirm the relevance of our findings for eukaryotic Elp3s and for understanding Elongator’s role in the onset of various neurodegenerative diseases and cancer in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.