Abstract
The X-ray diffraction, Scanning Electron Microscopy, Differential Scanning Calorimetry, dilatometric and electrical conductivity measurements were used to study the structural and physicochemical properties of selected silver-rich alloys from Ag–Al system. All the studied alloys, containing from 10 to 37 at. % of Al (Ag90Al10, Ag85Al15, Ag77Al23, Ag75Al25, Ag72Al28, Ag70Al30, Ag63Al37), were prepared from high purity metals by melting in a glove-box filled with a high purity argon atmosphere. The obtained X-ray diffraction patterns and microstructure observation of alloys containing up to 15 at. % of Al suggested that in this range only solid solution of silver exists. The thermal analysis showed heat effects related to phase transitions in Ag–Al system. In addition, the thermal expansion studies revealed an anomalous behavior in expansion for some composition of alloys associated with the phase transition. The electrical conductivity values rapidly changed, which may be associated with the formation of different phase areas in the Ag–Al system.Based on the results obtained in this work and critically reviewed literature data a thermodynamic re-optimization of the binary Ag–Al system using CALPHAD method was proposed. A good agreement between calculation and experiment was found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.