Abstract

HypothesesMontmorillonite, an abundant raw material, is a good candidate to obtain textured nanocomposites. However, the resulting structure of the composite depends on the dispersant used. This work aims at investigating the effect of organic polysaccharides, namely carboxymethylcellulose (CMC) or chitosan (Ch) differing by their side groups, on the resulting structure of montmorillonite-based nanocomposites. ExperimentsThe effect of sodium hexametaphosphate and of two polysaccharide derivatives (carboxymethylcellulose and chitosan) combined with montmorillonite on the structure and microstructure of resulting composite films was investigated using particle size analysis, rheological measurements, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy and flexural properties measurements of the textured films. FindingsResults showed that the film structure and microstructure depend on the additive. The high organization (and resulting toughness) of the montmorillonite/sodium hexametaphosphate films results from an exfoliated then layered microstructure, whereas the addition of polysaccharide derivatives leads to the particle agglomeration. In this case, two mechanisms are in competition: surface adsorption and intercalation between exfoliated platelets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.