Abstract
AbstractPolystyrene (PS) nanocomposites with titanate nanotubes and titanate nanoribbons were prepared by an extrusion process at 180°C. Nanocomposites with 1 wt% of nanofillers and pure PS that had also been exposed to the extrusion process were comparatively examined with scanning electron microscopy (SEM), electron dispersive X‐ray spectrometry (EDS) mapping, solid state proton nuclear magnetic resonance measurements (1H NMR), tensile tests, and shear creep measurements. SEM images and EDS mapping analysis show that titanate nanoribbons homogeneously distribute at a micrometer length‐scale in the PS matrix during the extrusion process. This is not the case for titanate nanotubes, which show a stronger tendency to form clusters. Solid state 1H NMR studies, however, proved that the nanocomposites are inhomogeneous at a nanometric scale where structural components with highly mobile PS molecules coexist with domains of rigid PS molecules. Differences in the 1H spin‐lattice relaxation at and above the glass transition temperature Tg = 373 K suggest that nanofillers affect the thermodynamic properties of nanocomposite domains. Only a slight increase in mechanical tensile properties was observed in the case of the nanocomposite containing 1 wt% of titanate nanoribbons (TiNRs) probably reflecting a weak interaction between the polymer matrix and the nanofiller. Nevertheless, our results prove that the use of functionalized TiNRs may, in combination with the extrusion process, represent a very promising starting point for the preparation of TiNR nanocomposites at the industrial level. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.