Abstract
Oxygen hydrogenation at 100 K by gas phase atomic hydrogen on Ni(110) has been studied under ultrahigh vacuum conditions by temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS). Formation of adsorbed water and hydroxyl species was observed and characterized. The coverage of the reaction products was monitored as a function of both temperature and initial oxygen precoverage. On the contrary, when high coverage oxygen overlayers were exposed to gas phase molecular hydrogen, no hydrogenation reaction took place. The results are compared to the inverse process, exposing the hydrogen covered surface to molecular oxygen. In this case, at 100 K, simple Langmuir-Hinshelwood modeling yields an initial sticking coefficient for oxygen adsorption equal to 0.26, considerably lower than for the clean surface. Moreover, formation of hydroxyl groups is found to be twice as fast as the final hydrogenation of OH groups to water. Assuming a preexponential factor of 10(13) s(-1), an activation barrier of 6.7 kcal/mol is obtained for OH formation, thus confirming the high hydrogenating activity of nickel with respect to other transition metals, for which higher activation energies are reported. However, oxygen is hardly removed by hydrogen on nickel: this is explained on the basis of the strong Ni-O chemical bond. The hydrogen residual coverage is well described including a contribution from the adsorption-induced H desorption process which takes place during the oxygen uptake and which is clearly visible from the TPD data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.