Abstract
Inositol 1,4,5-trisphosphate receptors (InsP3R) and ryanodine receptors (RyR) are tetrameric intracellular Ca2+ channels1. For each, the pore is formed by C-terminal transmembrane domains and regulated by signals detected by the large cytosolic structures. InsP3R gating is initiated by InsP3 binding to the InsP3-binding core (IBC, residues 224-604 of InsP3R1)2 and it requires the suppressor domain (SD, residues 1-223)2-8. We present structures of the N-terminal region (NT) of InsP3R1 with (3.6 Å) and without (3.0 Å) InsP3 bound. The arrangement of the three NT domains, the SD, IBC-β and IBC-α, identifies two discrete interfaces (α and β) between the IBC and SD. Similar interfaces occur between equivalent domains (A, B and C) in RyR19. The orientations of the three domains docked into a tetrameric structure of InsP3R10 and of the ABC domains in RyR9 are remarkably similar. The importance of the α-interface for activation of InsP3R and RyR is confirmed by mutagenesis and, for RyR, by disease-causing mutations9,11,12. InsP3 causes partial closure of the clam-like IBC, disrupting the β-interface and pulling the SD towards the IBC. This reorients an exposed SD loop (HS-loop) that is essential for InsP3R activation7. The loop is conserved in RyR and includes mutations associated with malignant hyperthermia and central core disease9,11,12. The HS-loop interacts with an adjacent NT, suggesting that activation re-arranges inter-subunit interactions. The A-domain of RyR functionally replaced the SD in a full-length InsP3R, and an InsP3R in which its C-terminal transmembrane region was replaced by that from RyR1 was gated by InsP3 and blocked by ryanodine. Activation mechanisms are conserved between InsP3R and RyR. Allosteric modulation of two similar domain interfaces within an N-terminal subunit re-orients the first domain (SD or A-domain), allowing it, via interactions of the second domain of an adjacent subunit (IBC-β or B-domain), to gate the pore.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.