Abstract
A T-DNA tagged mutant line of Arabidopsis thaliana, produced with a promoter trap vector carrying a promoterless gus (uidA) as a reporter gene, showed GUS induction in response to mechanical wounding. Cloning of the chromosomal DNA flanking the T-DNA revealed that the insert had caused a knockout mutation in a PTR-type peptide transporter gene named At5g46050 in GenBank, here renamed AtPTR3. The gene and the deduced protein were characterized by molecular modelling and bioinformatics. Molecular modelling of the protein with fold recognition identified 12 transmembrane spanning regions and a large loop between the sixth and seventh helices. The structure of AtPTR3 resembled the other PTR-type transporters of plants and transporters in the major facilitator superfamily. Computer analysis of the AtPTR3 promoter suggested its expression in roots, leaves and seeds, complex hormonal regulation and induction by abiotic and biotic stresses. The computer-based hypotheses were tested experimentally by exposing the mutant plants to amino acids and several stress treatments. The AtPTR3 gene was induced by the amino acids histidine, leucine and phenylalanine in cotyledons and lower leaves, whereas a strong induction was obtained in the whole plant upon exposure to salt. Furthermore, the germination frequency of the mutant line was reduced on salt-containing media, suggesting that the AtPTR3 protein is involved in stress tolerance in seeds during germination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.