Abstract

The density of beta2-adrenoceptors is significantly decreased in both keratinocytes and peripheral blood lymphocytes from patients with atopic eczema. Furthermore both cell types showed a sixfold increase in the K(D) for the specific binding of the non-specific antagonists (-)-[(3)H]CGP 12177 and [(125) I]CYP to keratinocytes and lymphocytes respectively compared with healthy controls. Based on these results polymorphism in the beta2-adrenoceptor gene was suspected. Consequently the entire intronless beta2-adrenoceptor gene was isolated from whole blood and by RT-PCR from keratinocyte extracts of nine patients with atopic eczema and four healthy controls. DNA sequence analysis of nine atopic eczema patients confirmed a substitution in codon (1618) GCC (Ala(119)) to GAC (Asp(119)). This point mutation is expressed on the third transmembrane helix only 13A away from the established agonist/antagonist binding site at Asp(113). Computer modelling of this third transmembrane helix revealed substantial structural changes in the mutant compared with the wild type. Epidermal keratinocytes were established from one patient with atopic eczema (homozygote), the mother (heterozygote) and one age-matched healthy control. Cells were grown in media containing different concentrations of l-phenylalanine and receptor densities were determined. The results showed that cells with atopic eczema showed an increased sensitivity to l-phenylalanine concentrations with a narrow homeostasis compared with healthy controls. The heterozygous mother was only 50% as sensitive as the child. In summary, the results indicate that atopic eczema is associated with a single point mutation in the beta2-adrenoceptor gene leading to an impaired adrenergic response in the epidermis of these patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.