Abstract

BackgroundStructural and functional neurobiological abnormalities have been observed in schizophrenia. Previous studies have concentrated on specific illness stages, obscuring relationships between functional/structural changes and disorder progression. The present study aimed to quantify structural and functional abnormalities across different clinical stages using functional near-infrared spectroscopy (fNIRS) and structural magnetic resonance imaging (sMRI). MethodsFifty-four participants with first-episode schizophrenia (FES), 120 with clinically high risk of psychosis (CHR), and 111 healthy controls (HCs) underwent functional near-infrared spectroscopy (fNIRS) to measure oxyhemoglobin (Oxy-Hb) during the verbal fluency task. Among them, 28FES, 64CHR and 55HC also finished sMRI. Oxy-Hb and gray matter volume (GMV) were compared among the three groups while controlling for covariates, including age, sex, years of education, and task performance. Mediation analysis was utilized to determine the mediating effect of GMV on Oxy-Hb and cognition. ResultsCompared with the HC group, CHR and FES groups showed significantly reduced brain activity. However, there were no significant differences between the FES and CHR. Pronounced GMV increase in the right frontal pole area (F = 4.234, p = 0.016) was identified in the CHR and FES groups. Mediation analysis showed a significant mediation effect of the right frontal pole GMV between Channel 31 Oxy-Hb and processing speed (z = 2.105, p = 0.035) and attention/vigilance (z = 1.992, p = 0.046). ConclusionsBrain activation and anatomical deficits were observed in different brain regions, suggesting that anatomical and functional abnormalities are dissociated in the early stages of psychosis. The relationship between neural activity and anatomy may reflect a specific pathophysiology related to cognitive deterioration in schizophrenia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.