Abstract

AbstractBurrowing habits or complex environments have generally been considered as potential drivers acting on reduction and loss of the appendicular skeleton among vertebrates. Herein, we suggest that this might be the case for lissamphibians and squamates, but that fin loss in fishes is usually prevented by important structural constraints, because pectoral fins are commonly used to control rolling and pitching. We provide an overview of the distribution of paired appendage reduction across vertebrates while examining the ecological affinities of finless and limbless clades. We analysed the correlation between lifestyle and fin or limb loss using the discrete comparative analysis. The resulting Bayesian factors indicate strong evidence of correlation between: (1) pectoral-fin loss and coexistence of anguilliform elongation and burrowing habits or complex habitat in teleost fishes; and (2) limb loss and a burrowing or grass-swimming lifestyle in squamate reptiles and lissamphibians. These correlations suggest that a complex environment or a fossorial habit is a driving force leading to appendage loss. The only style of locomotion that is functional even in the absence of paired appendages is the undulatory one, which is typical of all elongated reptiles and lissamphibians, but certainly less common in teleost fishes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.