Abstract

Atomization energies at 0 K and heats of formation at 0 and 298 K were predicted for the closed shell compounds XF, XF(2)(-), XF(2)(+), XF(3), XF(4)(-), XF(4)(+), XF(5), XF(6)(-), XF(6)(+) (X = Cl and Br) and XO(+), XOF, XOF(2)(-), XOF(2)(+), XOF(3), XOF(4)(-), XOF(4)(+), XOF(5), XOF(6)(-), XO(2)(+), XO(2)F, XO(2)F(2)(-), XO(2)F(2)(+), XO(2)F(3), XO(2)F(4)(-), XO(3)(+), XO(3)F, XO(3)F(2)(-) (X = Cl, Br, and I) using a composite electronic structure approach based on coupled cluster CCSD(T) calculations extrapolated to the complete basis set limit with additional corrections. The calculated heats of formation are in good agreement with the available experimental data. The calculated heats of formation were used to predict fluoride affinities, fluorine cation affinities, and F(2) binding energies. On the basis of our results, BrOF(5) and BrO(2)F(3) are predicted to be stable against spontaneous loss of F(2) and should be able to be synthesized, whereas BrF(7), ClF(7), BrOF(6)(-), and ClOF(6)(-) are unstable by a very wide margin. The stability of ClOF(5) is a borderline case. Although its F(2) loss is predicted to be exothermic by 4.4 kcal/mol, it may have a sufficiently large barrier toward decomposition and be preparable. This situation would resemble ClO(2)F(3) which was successfully synthesized in spite of being unstable toward F(2) loss by 3.3 kcal/mol. On the other hand, the ClOF(4)(+) and BrOF(4)(+) cations are less likely to be preparable with F(2) loss exothermicities of -17.5 and -9.3 kcal/mol, respectively. On the basis of the F(-) affinities of ClOF (45.4 kcal/mol), BrOF (58.7 kcal/mol), and BrO(2)F(3) (65.7 kcal/mol) and their predicted stabilities against loss of F(2), the ClOF(2)(-), BrOF(2)(-), and BrO(2)F(4)(-) anions are excellent targets for synthesis. Our previous failure to prepare the ClO(2)F(4)(-) anion can be rationalized by the predicted high exothermicity of -17.4 kcal/mol for the loss of F(2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.