Abstract

Nanoporous carbon offers promise for reversible storage of hydrogen. In this paper we discuss the influence of various parameters (energy of adsorption, H 2–H 2 interaction, pore geometry, chemical substitution of carbon by boron atom or Li +, quantum effects) on the adsorption capacity. The limits for these parameters have been explored using extensive grand canonical Monte Carlo simulations. We show that multilayer structures of hydrogen can be stabilized at low temperatures in pores larger than 1 nm. Furthermore, chemical substitution of carbon atoms by boron leads to increased adsorption. We also discuss how the mechanism of adsorption changes when the adsorption surface area is increased by drilling holes in graphene sheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.