Abstract

ABSTRACTPolycyclic aromatic hydrocarbons doped by metal have exhibited the potential of high temperature superconductivity. Understanding the basic properties of materials is the key to reveal the superconductivity. Here, a systemically theoretical study has been done to explore crystal structures and electronic properties of pristine and potassium-doped 1,2;8,9-dibenzopentacene, compared with [7]phenacenes case. We determined that vdW-DF2 functional is more suitable to describe the non-local interaction in a molecular crystal. Based on this functional, we predicted the crystal structures and investigated in detail the K atomic positions in a system. It was found that the intralayer doping leads to lower total energy. From the calculated formation energy, for each 1,2;8,9-dibenzopentacene molecule, the doping of two electrons is more stable under the relatively K-poor condition while the doping of four electrons is more stable under the K-rich condition. Between these two phases, the three-electron doping phase stabilises in a narrow region of K chemical potential. Combining with the electronic states at Fermi level, we analysed the reasons of superconductivity enhancement in doped 1,2;8,9-dibenzopentacene. This work further deepens the understanding of 1,2;8,9-dibenzopentacene superconductor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.