Abstract
Considerable attention has been paid to modulating these organic π-conjugates to realize effective and efficient organic photovoltaic by the means of theoretical methods. In respect to this, six commonly used heterocyclic compounds: thiophine (Th), thienopyrazine (TP), benzothiadiazole (BD), quinoxahine (BP), benzobisthiadiazole (BBD), and thenothiadiazole (TD) were co-oligomerized with bisazaphosphole (BAP) and theoretically examined for use in solar cells using density functional theory and time-dependent density functional theory to evaluate their optical, electronic, and light harvesting efficiency, as well as voltaic properties. The results showed that TP, TD, BD, BP, and BDD were preferable for optimization of the bandgaps and molecular energy levels of these organophosphorus-based compounds over Th. heterocyclic compounds. The calculated electron transfer process to the conduction band of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and the subsequent regeneration in BAP–BBD and PBAP (polybisazaphosphole)–TD were possible in organic voltaic cells, making these modeled compounds more proficient solar cell sensitizers. The method used can be explored in understanding the relationship between electronic properties and molecular structure of other materials for electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.