Abstract

Extremely long nanofibers, whose lengths reach the millimeter regime, are generated via co-aggregation of a melamine-appended perylene bisimide semiconductor and a substituted cyanurate, both of which are ditopic triple-hydrogen-bonding building blocks; they co-aggregate in an unexpected stoichiometrically mismatched 1:2 ratio. Various microscopic and X-ray diffraction studies suggest that hydrogen-bonded polymeric chains are formed along the long axis of the nanofibers by the 1:2 complexation of the two components, which further stack along the short axis of the nanofibers. The photocarrier generation mechanism in the nanofibers is investigated by time-of-flight (TOF) experiments under electric and magnetic fields, revealing the birth and efficient recombination of singlet geminate electron-hole pairs. Flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements revealed intrinsic 1D electron mobilities up to 0.6 cm(2) V(-1) s(-1) within nanofibers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.