Abstract

Sodium bismuth titanate, Na0.5Bi0.5TiO3 (NBT) ceramics were produced by three different methods; conventional mixed-oxide (CMO) route, molten salt synthesis (MSS) and topochemical microcrystal conversion (TMC) and then sintered at 1150 oC for 2 h in air atmosphere. The crystal structure, dielectric, ferroelectric and field-induced strain properties were investigated for all samples. All samples showed a single phase perovskite structure without any evidences of unwanted secondary phases. The NBT ceramics synthesized by the TMC method show slightly better dielectric, ferroelectric and field induced strain response as compared with CMO and MSS synthesized ceramics. The room temperature dielectric constant measured at 1 kHz increased from 218 for NBT ceramics synthesized by MSS method to 271 and 330 for CMO and TMC synthesized ceramics, respectively. Similarly, the dynamic piezoelectric coefficient (d33*) enhanced from 91 pm/V for CMO synthesized to 97 pm/V and 107 pm/V for MSS and TMC synthesized ceramics, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.