Abstract
The present study investigates the influence of the incorporation of boron in Diamond-Like Carbon (DLC) films deposited by femtosecond laser ablation, on the structure and electrical properties of the coatings within the temperature range 70–300 K. Doping with boron has been performed by ablating alternatively graphite and boron targets. The film structure and composition have been highlighted by coupling Atomic Force Microscopy (AFM), Scanning Electron Microscopy equipped with a field emission gun (SEM-FEG) and High Resolution Transmission Electron Microscopy (HRTEM). Boron dilution ranges between 2 and 8% and appears as nanometer size clusters embedded in the DLC matrix. Typical resistivity values are 100 W cm for pure a-C films, down to few W cm for a-C:B films at room temperature. The resistance decreases exponentially when the temperature increases in the range 70–300 K. The results are discussed considering the classical model of hopping conduction in thin films. Some coatings show temperature coefficients of resistance (TCR) as high as 3.85%. TCRs decrease when the doping increases. Such high values of TCR may have interests in the use of these films as thermometer elements in micro and nanodevices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.