Abstract

Heteronuclear multidimensional NMR spectroscopy was used to investigate in detail the structural and dynamical properties of a partially unfolded intermediate of the reduced high-potential iron-sulfur protein (HiPIP) from Chromatium vinosum present in 4 M guanidinium chloride solution. After an extensive assignment of 15N and 1H resonances, NOE data, proton longitudinal relaxation times, and 3JHNHalpha coupling constants as well as 15N relaxation parameters (T1, T2, T1rho, and 1H-15N NOE) were obtained and used to build a structural model of the intermediate. The Fe4S4 cluster of the HiPIP plays a decisive role in determining the resulting structure, which is random in the N-terminal half of the protein and partially organized in the loops between the cysteines bound to the cluster. Consistent with the structural data, the backbone mobility is typical of folded proteins in the regions where there are elements of structure and increases with the structural indetermination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.