Abstract

Energy demand and need for sustainable sources for fuel production have resulted in the development of alternative fuel technologies. Waste cooking oil (WCO) and algal oil (AO) extracted from Chlorella variabilis have been transesterified to yield WCO biodiesel (WCOBD) and AO biodiesel (AOBD). The present study aims to produce biodiesel by blending optimised proportion (1.25%) of AO with WCO to get 1.25AO-WCO for making biodiesel with improved properties. The reaction conditions for transesterification of 1.25AO-WCO were augmented by response surface methodology tool to attain supreme fatty acid methyl ester (FAME) yield of 98%. Fourier transform infrared spectroscopy (FTIR) of 1.25AO-WCO BD were performed to prove the production of biodiesel and their FAME profile is determined using gas chromatography with flame ionisation detector (GC-FID). Properties of 1.25AO-WCO BD were determined for 1.25AO-WCO BD and observed to meet ASTM standards apart from exhibiting better properties than biodiesel made from 100% WCO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.