Abstract

The genes coding for the enzymes of oxidative degradation of nicotinic acid have recently been identified in several species of aerobic bacteria, namely, Pseudomonas putida KT2440, Bordetella bronchiseptica RB50, and Bacillus niacini. One of the enzymes involved in an early step of this pathway is a flavin-dependent monooxygenase (6-hydroxynicotinic acid 3-monooxygenase; NicC) that catalyzes the decarboxylative hydroxylation of 6-hydroxynicotinic acid (6-HNA) to 2,5-dihydroxypyridine (2,5-DHP), with concomitant oxidation of NADH to NAD+. The nicC genes from B. bronchiseptica RB50 and P. putida have been cloned, and the purified enzymes have been characterized functionally and structurally. Global fits of the steady-state kinetic data show that both enzymes are efficient catalysts, with an apparent kcat/KM6-HNA of 5.0 × 104 M–1 s–1 for B. bronchiseptica NicC. The pH dependence of Vmax/[E]t fits a double-bell model showing an optimum around pH 8 with apparent pKas of 7.24 ± 0.08 and 8.64 ± 0.08, whereas the...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.