Abstract

By combining mild alkaline hydrolysis with quantitative 31P NMR we have been able to arrive at a protocol for determining the various ester linkages and their relative contributions to the overall structure of wheat straw lignin. Additional information on the identity and location of these bonds was sought by the application of GC/MS and two-dimensional 13C−1H heterocorrelation NMR experiments. Milled straw lignin was found to contain about 12 ester units per 100 phenylpropane units. Approximately 77% of the carboxyl fraction of these ester bonds was found to be composed of p-coumaric acid while the rest was other aromatic acids bound to lignin via intra- and/or intermolecular ester bonds. In contrast, the hydroxyl fraction of the ester bonds was found to be almost exclusively aliphatic. A small fraction (about 1.6%) of the milled straw lignin units was found to be esterified through the phenolic hydroxyl groups of C-5 condensed phenolic units. The application of 13C−1H correlative NMR experiments revealed that acylation occurs only at the γ-position of the lignin side chain. Detailed studies of two-dimensional HOHAHA and HMQC experiments failed to show evidence for the presence of α-O-4 substructures in milled wheat straw lignin. Keywords: Wheat straw lignin; 2D NMR; structural analysis

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.