Abstract

Hydrogen bonding between the DNA nucleobases and small organic molecules, such as melamine, is a new strategy for the design of novel DNA materials. Poly(thymidine) DNA and melamine self-assemble into a duplex structure containing two antiparallel DNA strands hydrogen bonded to central melamine units. In this Article, molecular dynamics simulations rationalize the observed antiparallel duplex structure. Alternative duplex and triplex structures with parallel and antiparallel strand orientations are shown to be unstable because of the increase in unfavorable interactions between the DNA backbones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.