Abstract
The ZnO/CeO2 nanocomposite material has been successfully synthesized through a simple chemical precipitation method and calcinated at 750 °C. The calcinated sample has been characterized by powder X-ray diffraction analysis to confirm the crystalline nature of the material. The atomic positions and structural parameters were calculated by Rietveld refinement process from the observed diffraction pattern. The prepared nanocomposite was also characterized by SEM, FT-IR, and UV–Vis diffuse reflectance spectroscopy techniques to understand the surface morphology, functionality and optical properties of the prepared sample, respectively. The ZnO/CeO2 nanocomposite used to modify electrode to investigate the electrochemical performance towards supercapacitor application using 3 M KOH and 0.2 M K4[Fe(CN)6] redox additive based electrolyte. The ZnO/CeO2 nanocomposite delivered a maximum specific capacitance of 1069 Fg-1 at a scan rate of 5 mVs−1 and the maximum energy density of 39.6 Whkg−1 at 3 Ag-1 current density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.