Abstract

Hydrothermal barite is a typical low-temperature mineral formed during the mixing of hydrothermal fluid and seawater. Because of its extremely low solubility, barite behaves as a close system after crystallization and preserves the geochemical fingerprint of hydrothermal fluid. In this study, the elemental contents and Sr isotope compositions of hydrothermal barites from the Yonaguni IV were determined using electron microprobe and LA-MC-ICP-MS respectively. On these bases, the fluid/sediment interaction during the hydrothermal circulation and physicochemical condition of barite crystallization were discussed. Results show that the 87 Sr/ 86 Sr values of hydrothermal barites from the Yonaguni IV are apparently higher than those of the seawater and associated volcanic rocks, indicating the sufficient interaction between the hydrothermal fluid and overlying sediment. Monomineral Sr abundance shows large variations, reflecting the changes in barite growth rate during the fluid mixing. The mineralization condition in the Yonaguni IV was unstable. During the crystallization of barite, hydrothermal fluid and seawater mixed in varying degrees, with the proportions of hydrothermal fluid varied from 36% to 72%. The calculated crystallization temperatures range from 109 to 220°C. Sediment plays a critical role during the mineralization process in the Yonaguni IV and incorporation of sediment component into hydrothermal system was prior to barite crystallization and sulfide mineralization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.