Abstract

Van der Waals (vdW) ferroelectric insulator CuInP2S6 (CIPS) has attracted intense research interest due to its unique ferroelectric and piezoelectric properties. In this paper, we systematically investigate the temperature and frequency dependence of the ferroelectric properties of CIPS. We find that there is a large imprint in the CIPS capacitor, which can be attributed to the fixed dipoles induced by defects. At high temperatures and low frequencies, the amplitude and direction of the imprint become tunable by the preset pulse, as the copper ions are more mobile and these dipoles become switchable. When the polarization in CIPS changes direction, the graphene/CIPS/graphene ferroelectric diode exhibits switchable resistance since the Fermi level in graphene is modulated by the polarization in CIPS. For CIPS/MoTe2 dual-gate transistor, a temperature-dependent nonvolatile memory window is observed, which can be attributed to the interplay between ferroelectric polarization and interface traps. This research provides experimental groundwork for vdW ferroelectric materials, expands the understanding of ferroelectricity in CIPS, and opens up exciting opportunities for novel electronic devices based on vdW ferroelectric materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.