Abstract

We investigate short-term non-linearity of solar irradiance fluctuations using the multifractal detrended fluctuation analysis (MFDFA). The MFDFA shows that time series of solar irradiance have a long range correlation function with a multifractal behavior. We apply this method to solar irradiance time series from several regions around the world with resolutions of seconds and minutes. The obtained generalized Hurst and Renyi exponents h(q) and τ(q) suggest the non-linear and non-stationary essence of measured irradiance time series. Also, we analyze shuffled, random phase, and rank-wised surrogated data to reveal the nature of the multifractality and conclude that linear and non-linear correlations are the dominant contributions to observed multifractal and non-linear behavior of solar irradiance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.