Abstract

AbstractWe prove that for a vast class of random walks on a compactly generated group, the exponential growth of convolutions of a probability density function along almost every sample path is bounded by the growth of the group. As an application, we show that the almost sure and $L^1$ convergences of the Shannon–McMillan–Breiman theorem hold for compactly supported random walks on compactly generated groups with subexponential growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.