Abstract
Sinking particles play a crucial role in transferring carbon from the atmosphere to the deep ocean. However, due to intensive particle transformations such as aggregation, disaggregation, and remineralization, only a small portion of the organic carbon produced in the euphotic zone ends up being sequestered in the deep ocean or sediment. Mesoscale eddies can significantly impact the surface ocean nutrient budget, primary production, and carbon export. Despite this, there is still a lack of research on how particle dynamics in eddy-impacted regions affect the efficiency of carbon export. In this study, we used observations of thorium isotopes (234Th and 228Th) and particulate organic carbon (POC) at two stations in the South China Sea (TS1: a decaying-eddy-impacted station and SEATS: an oligotrophic station) and an inverse model to investigate the impact of particle dynamics on particle export efficiency. Our findings indicate that particle remineralization/fragmentation was enhanced inside the eddy, which counteracted the nutrient pumping effect that promotes surface ocean productivity and eventually led to even lower carbon flux compared to the oligotrophic station.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.