Abstract

The Iwate–Miyagi earthquake (Mw 6.9) of 14 June 2008 is one of the largest intraplate earthquakes that struck north-east Japan. This earthquake has produced the largest peak ground acceleration (PGA) ever recorded. The acceleration values 4022 and 1036 gal were observed at the surface and borehole accelerometers of IWTH25. To understand the cause of this extremely large acceleration, it is highly essential to obtain the detailed rupture process of Iwate–Miyagi earthquake. The present paper estimates the rupture model for this earthquake using the modified semi-empirical technique (MSET). The detailed analysis proposes one strong motion generation area (SMGA) in the rupture plane and nucleation point in the extreme western corner of the SMGA. Using this estimated source model, a satisfactory match is observed between the simulated and actual records. The quantitative analysis of these waveforms provides an almost 1:1 match for PGA values. Furthermore, the variation of these PGA values with epicentral distance shows similar attenuation rate. These results confirm the reliability of MSET and the estimated source model of this earthquake. To the best of our knowledge, this study is the first to model SMGAs in the rupture model using MSET and provides sufficiently reliable information which will be useful for seismic hazard prevention management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.