Abstract

AbstractThe Kuroshio and tides significantly influence the oceanic environment off the Japanese mainland and promote mass/heat transport. However, the interaction between the Kuroshio and tides/internal waves has not been examined in previous works. To investigate this phenomenon, the two-dimensional high-resolution nonhydrostatic oceanic Stanford Unstructured Nonhydrostatic Terrain-Following Adaptive Navier–Stokes Simulator (SUNTANS) model was employed. The results show that strong internal tides propagating upstream in the Kuroshio are generated at a near-critical internal Froude number (Fri = 0.91). The upstream internal wave energy flux reaches a magnitude of 12 kW m−1, which is approximately 3 times higher than that of internal waves without the Kuroshio. On the other hand, under supercritical conditions, the Kuroshio suppresses the internal wave energy flux. The interaction of internal tides and the Kuroshio also generates upstream propagating high-frequency internal waves and solitary wave packets. The high-frequency internal waves contribute to the increase in the total internal wave energy flux up to 40% at the near-critical Fri value. The results of this study suggest that the interaction of internal tides and the Kuroshio enhances the upstream propagating internal tides under the specified conditions (Fri ~ 1), which may lead to deep ocean mixing and transport at significant distances from the internal wave generation sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.