Abstract

It is well known that the duality theory for linear programming (LP) is powerful and elegant and lies behind algorithms such as simplex and interior-point methods. However, the standard Lagrangian for nonlinear programs requires constraint qualifications to avoid duality gaps. Semidefinite linear programming (SDP) is a generalization of LP where the nonnegativity constraints are replaced by a semidefiniteness constraint on the matrix variables. There are many applications, e.g., in systems and control theory and combinatorial optimization. However, the Lagrangian dual for SDP can have a duality gap. We discuss the relationships among various duals and give a unified treatment for strong duality in semidefinite programming. These duals guarantee strong duality, i.e., a zero duality gap and dual attainment. This paper is motivated by the recent paper by Ramana where one of these duals is introduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.