Abstract

We revisit a fundamental open problem in quantum information theory, namely whether it is possible to transmit quantum information at a rate exceeding the channel capacity if we allow for a non-vanishing probability of decoding error. Here we establish that the Rains information of any quantum channel is a strong converse rate for quantum communication: For any sequence of codes with rate exceeding the Rains information of the channel, we show that the fidelity vanishes exponentially fast as the number of channel uses increases. This remains true even if we consider codes that perform classical post-processing on the transmitted quantum data. As an application of this result, for generalized dephasing channels we show that the Rains information is also achievable, and thereby establish the strong converse property for quantum communication over such channels. Thus we conclusively settle the strong converse question for a class of quantum channels that have a non-trivial quantum capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.