Abstract

In this paper, we introduce and study an iterative scheme by a hybrid method for finding a common element of the set of solutions of an equilibrium problem, the set of common fixed points of a finite family of nonexpansive mappings and the set of solutions of the variational inequality for an inverse-strongly-monotone mapping in a real Hilbert space. Then, we prove that the iterative sequence converges strongly to a common element of the three sets. Using this result, we consider the problem of finding a common fixed point of a finite family of nonexpansive mappings and a strictly pseudocontractive mapping and the problem of finding a common element of the set of common fixed points of a finite family of nonexpansive mappings and the set of zeros of an inverse-strongly monotone mapping. The results obtained in this paper extend and improve the several recent results in this area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.