Abstract

The structure of driven three-dimensional complex-plasma clusters was studied experimentally. The clusters consisted of around 60 glass microspheres that were suspended in a plasma of rf discharge in argon. The particles were confined in a glass box with conductive yet transparent coating on its four side walls. This allowed manipulating the particle cluster by biasing the confining walls in a certain sequence and direct imaging of the cluster. In this work, a rotating electric field was used to drive the clusters. Depending on the field frequency, the clusters rotated (104–107 times slower than the rotating field) or remained stationary. The cluster structure was neither that of nested spherical shells nor a simple chain structure. Strings of various lengths were found consisting of 2 to 5 particles, their spatial and temporal correlations were studied. The results are compared to recent simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.