Abstract

String matching and compression are two widely studied areas of computer science. The theory of string matching has a long association with compression algorithms. Data structures from string matching can be used to derive fast implementations of many important compression schemes, most notably the Lempel—Ziv (LZ77) algorithm. Intuitively, once a string has been compressed—and therefore its repetitive nature has been elucidated—one might be tempted to exploit this knowledge to speed up string matching. The Compressed Matching Problem is that of performing string matching in a compressed text, without uncompressing it. More formally, let T be a text, let Z be the compressed string representing T , and let P be a pattern. The Compressed Matching Problem is that of deciding if P occurs in T , given only P and Z . Compressed matching algorithms have been given for several compression schemes such as LZW.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.