Abstract

Axial symmetry for covariance functions defined over spheres has been a very popular assumption for climate, atmospheric, and environmental modeling. For Gaussian random fields defined over spheres embedded in a three-dimensional Euclidean space, maximum likelihood estimation techiques as well kriging interpolation rely on the inverse of the covariance matrix. For any collection of points where data are observed, the covariance matrix is determined through the realizations of the covariance function associated with the underlying Gaussian random field. If the covariance function is not strictly positive definite, then the associated covariance matrix might be singular. We provide conditions for strict positive definiteness of any axially symmetric covariance function. Furthermore, we find conditions for reducibility of an axially symmetric covariance function into a geodesically isotropic covariance. Finally, we provide conditions that legitimate Fourier inversion in the series expansion associated with an axially symmetric covariance function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.