Abstract

In the tangent space of some spatially extended dissipative systems one can observe "physical" modes which are highly involved in the dynamics and are decoupled from the remaining set of hyperbolically "isolated" degrees of freedom representing strongly decaying perturbations. This mode splitting is studied for the Ginzburg-Landau equation at different strength of the spatial coupling. We observe that isolated modes coincide with eigenmodes of the homogeneous steady state of the system; that there is a local basis where the number of nonzero components of the state vector coincides with the number of "physical" modes; that in a system with finite number of degrees of freedom the strict mode splitting disappears at finite value of coupling; that above this value a fussy mode splitting is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.