Abstract

As a new approach to "More than Moore", integrated ionic circuits serve as a possible alternative to traditional electronic circuits, yet the integrated ionic circuit composed of functional ionic elements and ionic connections is still challenging. Herein, a stretchable and transparent ionic display module of the integrated ionic circuit has been successfully prepared and demonstrated by pixelating a proton-responsive hydrogel. It is programmed to excite the hydrogel color change by a Faraday process occurring at the electrode at the specific pixel points, which enables the display of digital information and even color information. Importantly, the display module exhibits stable performance under strong magnetic field conditions (1.7T). The transparent and stretchable nature of such ionic modules also allows them to be utilized in a broad range of scenarios, which paves the way for integrated ionic circuits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.