Abstract

ABSTRACTThin (0.1 μm) LPCVD polycrystalline silicon (poly-Si) films are shown to exhibit permeability and suffer structural degradation when exposed to concentrated hydrofluoric acid. Analysis by TEM and SEM reveals two attack mechanisms. (1) Poly-Si films deposited onto phosphosilicate glass (PSG) at 605ºC exhibit tensile residual stress and degrade immediately upon exposure to HF, a phenomenon which we attribute to stress-corrosion cracking. Phosphorus from the PSG layer enters the poly-Si during the deposition, resulting in a microstructural gradient which contributes to the cracking mechanism. (2) As-deposited tensile poly-Si films on phosphorus-free LPCVD SiO2 (LTO) and annealed films on LTO and PSG blister at different rates in HF due to penetration at foreign particle inclusion sites and other film defects. Unannealed compressive films deposited at 650ºC onto PSG do not show any evidence of attack.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.