Abstract

The purpose of this paper is to apply stress constraints to structural topology optimization problems with design-dependent loading. A comparison of mass-constrained compliance minimization solutions and stress-constrained mass minimization solutions is also provided. Although design-dependent loading has been the subject of previous research, only compliance minimization has been studied. Stress-constrained mass minimization problems are solved in this paper, and the results are compared with those of compliance minimization problems for the same geometries and loading. A stress-relaxation technique is used to avoid the singularity in the stress constraints, and these constraints are aggregated in blocks to reduce the total number of constraints in the optimization problem. The results show that these design-dependent loading problems may converge to a local minimum when the stress constraints are enforced. The use of a continuation method where the stress-constraint aggregation parameter is gradually increased typically leads to better convergence; however, this may not always be possible. The results also show that the topologies of compliance-minimization and stress-constrained solutions are usually vastly different, and the sizing optimization of a compliance solution may not lead to an optimum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.