Abstract
A mechanomathematical model for bending of packages of transversely isotropic bars of rectangular cross section is proposed. Adhesion, slippage, and separation zones between the bars are considered. The resolving equations for deflections and tangential displacements are supplemented with a system of linear differential equations for determining the normal and tangential contact stresses, and boundary conditions are formulated. A scheme for analytical solution of two contact problems—a package under the action of a distributed load and a round stamp—is considered. For these packages, a transition is performed from the initial system of differential equations for determining the contact stresses, where the unknown functions are interrelated by recurrent relationships, to one linear differential equation of fourth order and then to a system of linear algebraic equations. This transition allows us to integrate the initial system and get expressions for the contact stresses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.