Abstract

Based on a spatial model of the linear theory of elasticity, using an unconventional approach of the reduction of the original three-dimensional boundary value problem described by a system of partial differential equations with variable coefficients to a one-dimensional boundary value problem for a system of ordinary differential equations with constant coefficients, the problem of finding the dimensional stress of hollow elliptic orthotropic cylinders under the influence of various types of loading has been solved under certain boundary conditions at the orientation plane. Reducing the dimensionality of the original problem is carried out using analytical methods of separating variables in two coordinate directions in combination with the method of approximating functions by discrete Fourier series. The one-dimensional boundary value problem is solved by the stable numerical method of discrete orthogonalization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.